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Abstract
The degenerate three-photon absorption coefficient and cross section associated with the
interband transition 1S3/2(h)–1S(e) for CdTe spherical quantum dots have been calculated
within the two-level model. The band structure and wavefunctions are derived from the
8 × 8 k · p Hamiltonian which takes into account the conduction–valence band coupling and the
mixing of the valence states. The transition selection rules for three-photon absorption in the
case of linearly polarized incident light are discussed in detail. The size-dependent three-photon
absorption spectra versus incident photon energy have been obtained and analyzed.

1. Introduction

The nonlinearities of quantum dot (QD) structures have
received much attention [1, 2] due to the considerable
enhancement of their nonlinear response caused by quantum
size effects. Recently, they have been widely used as optical
switches, bio-labels, biosensors and imaging agents [3, 4].
In these applications, QDs are excited through two-photon
absorption (2PA) or three-photon absorption (3PA) [5]. The
saturation of 2PA and 3PA should be anticipated at high
excitation intensity due to the finite number of excited states,
and this is an unwanted property. Multi-photon absorption
is a process wherein two or three photons which can have
the same or different energies are absorbed by the medium
simultaneously through virtual states to reach the excited
state [6]. Compared with 2PA, longer excitation wavelengths
can be used in 3PA-based applications providing deeper
penetration depths in absorbing media [7, 8]. To our
knowledge, the 2PA theory has been verified by a large number
of experiments [9–11]. Research efforts on 3PA are much more
limited. He et al [12, 13] reported a systematic investigation of
both three-photon absorption spectra and dispersions of Kerr-
type nonlinear refraction in wide gap semiconductors, and they
also measured the 3PA for ZnO and ZnS nanocrystals. Lin et al

3 Author to whom any correspondence should be addressed.

studied one-, two-, and three-photon absorption properties for
a series of Y-shaped molecules [6].

It is well known that three-dimensional (3D) semiconduc-
tor quantum dots exhibit a discrete set of energy levels due to
the full confinement in all three dimensions, which leads to
higher third-order nonlinear susceptibilities than for bulk ma-
terials. Additionally, the 2PA coefficient is related to the imag-
inary part of the third-order nonlinear susceptibilities while the
3PA coefficient is related to the imaginary part of the fifth-order
nonlinear susceptibilities. Up to now, the theoretical study on
3PA in quantum confined materials has been much more lim-
ited than that of 2PA. Most of the studies are of bulk semicon-
ductors [14, 15].

In this paper, we have deduced the expressions for
the degenerate 3PA coefficient and the cross section for
spherical CdTe quantum dots based on the more accurate
electronic structure which is obtained in the effective-
mass approximation under the well-known eight-band model,
including the doubly degenerate conduction band and twofold-
degenerate bands of heavy (hh), light (lh), and spin–orbit-
split holes. It is more adequate because it takes into account
not only the coupling between hh, lh and so holes but also
the coupling of conduction and valence bands. Fedorov et al
[16] theoretically analyzed the two-photon transition in CdS
quantum dots using the parabolic energy band structure which
did not include any band coupling. Actually, for relatively
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narrow band gap semiconductors, the conduction band and
valence bands are strongly coupled [17]. Starting from the
rate of three-photon interband transition, the quantum dot size-
dependent three-photon absorption coefficient and absorption
cross section in CdTe quantum dots have been calculated
within the two-level model, which regards the conduction band
and valence bands themselves as the intermediate states.

2. Theory

2.1. Electron and hole energy levels and wavefunctions

We consider an isolated spherical CdTe quantum dot in which
the electrons and holes are located in infinitely high potential
wells. On the basis of the following eight Bloch functions [17]:
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the 8 × 8 k · p Hamiltonian can be written as [17, 18]

Hk·p =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Del −√
3K+

√
2Kz −Kz

−√
3K− Dhh −G− 1√

2
G−√

2Kz −G+ Dlh R
−Kz

1√
2
G+ R Dso

0 0 −K+ −√
2K+

0 0 1
2 W ∗ 1√

2
W ∗

K+ − 1
2 W ∗ 0 −

√
3
2 G+

√
2K+ − 1√

2
W ∗

√
3
2 G+ 0

0 0 K−
√

2K−
0 0 − 1

2 W − 1√
2
W

−K− 1
2 W 0

√
3
2 G−

−√
2K− 1√

2
W −

√
3
2 G− 0

Del −√
3K−

√
2Kz −Kz

−√
3K+ Dhh −G+ 1√

2
G+√

2Kz −G− Dlh R
−Kz

1√
2
G− R Dso

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

Here, each diagonal element is defined as
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And the off-diagonal terms are given by
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(4)

The operators in the Hamiltonian are expressed in terms
of projection of the momentum operators, Px,y,z = −ih̄∇x,y,z ,
and P± = Px ± Py . The magnitude of the coupling between
the conduction band and valence band is described usually in
terms of the first-order Kane parameter P0 = i(h̄/m0)〈s|Px |x〉
or Ep = (2m0/h̄2)P2

0 , where Ep is the Kane energy. Eg is
the band gap, and �0 is the spin–orbit splitting. The parameter
α takes into account the contribution of remote bands to the
conduction (electron) effective mass. And contributions of
remote bands to the hole effective masses are written in the
terms of modified Luttinger parameters, γ1 = γ L

1 − Ep/3Eg,
γ2 = γ L

2 − Ep/6Eg and γ3 = γ L
3 − Ep/6Eg.

With the approximation of effective mass, the wavefunc-
tion near the � point in Brillouin zone can be represented in
terms of the product of the periodic Bloch functions at k = 0
and envelope functions as follows [17, 19]:

�(r) =
∑

n

Un(r)Fn(r), (5)

where Un(r) is the Bloch function, which corresponds to eight
band-edge wavefunctions in equation (1) (n = 1, 2, 3, . . . , 8).
Fn(r) is the slowly varying envelope function, near the top of
the valence band and the bottom of the conduction band, which
can be expanded as

Fn(r) =
∑

n,L

C M
n,L f M

n.L

=
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C M
n,L An,L jL(kL

n r)Y M
L (θ, φ), (6)

where C M
n,L are constants. An,L = √

2/R3(1/[ jL+1(μ
L
n )]) is

a normalization constant, jL(x) the spherical Bessel function,
and Y M

L (θ, φ) the spherical harmonics. In the case of
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the axial model, diagonal and off-diagonal elements in the
Hamiltonian (2) present different inversion symmetries and the
structures of operators (2) determine an inherent symmetry. In
order to take full advantage of the aforementioned symmetry
properties, the eight-component spinor wavefunctions in each
Hilbert subspace will be expanded [17]. If we neglect
the warping term, each subspace can be constructed with a
combination of even and odd functions. The general forms of
the spins or states can be given by [17]
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Each state |�M
I (r)〉 or |�M

	 (r)〉 differs from the
usual descriptions which classify them according to their
parities [17, 18]. The order of orbital quantum number
L in equations (7) and (8) is determined by the off-
diagonal elements in Hamiltonian (2). The combinations
of the operators P± and Pz in the off-diagonal terms of
the Hamiltonian, which show the conduction–valence band
coupling and the valence band mixing, determine how the
states must be constructed. The operators P+ and P− change
the parity of the angular envelope function Y M

L (θ, φ) while
Pz preserves the parity of the orbital angular momentum. In
our infinitely high potential well model, states �M

I,	(r) should
fulfill the boundary condition �M

I,	(r) = 0 at radius R. So
kL

n = μL
n /R, where μL

n is the nth zero of the spherical Bessel
function jL(x).

In order to get the energy levels in each independent M
subspace, we use matrix multiplication instead of summation
in equations (7) and (8). For reducing the order of the matrix,
we replace the sum

∑

n,L by
∑

N . The total number of N can
be fixed when an appropriate convergence condition has been
reached. The 8 × 8 matrix Hamiltonian can be expanded to
8N × 8N . Combining (2)–(8), a concise expression for the
Schrödinger equation is written as

[H ]8N×8N [C]8N×1 = E [C]8N×1 . (9)

Just diagonalizing the matrix [H ]8N×8N , eigenvalues and
eigenvectors are obtained.

2.2. Calculation for interband three-photon absorption

Third-order time-dependent perturbation theory furnishes the
following equation for the transition probability rate per unit
volume of electrons in an initial state i going to a final state f by
the simultaneous absorption of three photons, each of energy
h̄ω:

W (3) = 2π

h̄

∑

i,f

|Mf,i|2δ(Ef − Ei − 3h̄ω), (10)

where Ei and Ef represent the energies of the initial and final
states respectively. Here the summation is over all possible
transitions between the initial and final states. The matrix
elements give the strengths of the transitions between these
states:

Mf,i =
∑

m,n

H int
f,m H int

m,n H int
n,i

(Em − En − 2h̄ω − ih̄γ )(En − Ei − h̄ω − ih̄γ )
.

(11)
The sum

∑

m,n is over intermediate states m and n. H int =
(e/mc)A · p is used for the electron–photon interaction. A =
Ae is the vector potential of the light wave with amplitude A
and the polarization vector e, and p is the electron momentum
operator, and γ is the inverse of the lifetime in each excited
state. The three-photon absorption coefficient α3 is related
to the three-photon transition probability W (3) by the simple
expression

α3 = 2W (3)(3h̄ω)N0/I 3 (12)

where I is the incident radiation intensity and the factor
2 accounts for electron spin degeneracy. Occasionally the
nonlinear absorption is described in terms of absorption cross
sections. In the case of three-photon absorption, the nonlinear
cross section σ3 is defined as

σ3 = (h̄ω)2α3/N0. (13)

Since the wavefunction near the � point in the Brillouin
zone can be represented in terms of the product of the
periodic Bloch functions at k = 0 and envelope functions in
equation (5), then

H int
i, j = 〈�i |H int|� j〉
=

∑

i, j

(eA/mc)〈Fi |Fj 〉〈Ui |e · p|U j 〉

+
∑

i, j

(eA/mc)〈Ui |U j〉〈Fi |e · p|Fj 〉. (14)

The second term in equation (14) is responsible for
intraband optical transitions, since 〈Ui |U j〉 = δi j . So this term
can be neglected for the interband transitions.

According to our choice that the incident light with lin-
ear polarization e ‖ z�, the integration over the Bloch function
results in size-independent dipole matrix elements:
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where (iP) = h̄〈s| ∂
∂x |x〉 is proportional to the Kane coupling

parameter P0. Considering the normalization condition of the
envelope function, for the interband transition from the valence
band to the conduction band the optical matrix element (14)
can be rewritten as

H int
i, j = (eA/mc)iP�e,h(I,	)δLe,Lh δMe,Mh , (16)

where
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On the grounds established by equations (14)–(17), the
corresponding selection rules for each optical transition in
z� polarization can be precisely obtained. According to the
structure of both Hilbert subspaces obtained (7), (8) and the
element of the transition matrix (14)–(17), it can be seen that
the only allowed transitions are those between �i(h, L, M)

and �f(e, L, M) belonging to different subspaces I and II,
i.e. in the same M subspace, (II) lh+ → (I) e+, (II) so+ →
(I) e+, (II) lh− → (I) e−, (II) so− → (I) e−, (I) lh+ →
(II) e+, (I) so+ → (II) e+, (I) lh− → (II) e−, and (I) so− →
(II) e−. Moreover, in different M subspaces, some transitions
are also permitted, as long as they have the same orbital angular
quantum number L and magnetic quantum number M .

3. Numerical results and discussion

As can be seen from equations (10) and (11), the problem of
three-photon absorption is conceptually simple. However, the
calculation of reliable numerical values from the three-photon
absorption transition probabilities is extremely difficult since
it requires knowledge of the interaction Hamiltonian matrix
elements among all the eigenstates of the quantum dot and
summations over all the energy bands. In order to make
the calculation of the absorption coefficients tractable, early
workers usually made many approximations regarding the
energy bands and intermediate states [20]. In our calculation,
using the two-band model, in which the initial and final
bands themselves served as the intermediate states [21], we
calculated the three-photon absorption coefficient and cross
section associated with the interband transition from the
valence band to the conduction band.

The eigenenergies and eigenstates of electrons in quantum
dots must be obtained first. The formulas for the energy levels

Figure 1. The energy spectra of electron and holes as a function of
1/R2 for the CdTe single quantum dot, coincident with [17].

and the wavefunctions of the valence and conduction bands
of quantum dots near the � point in the Brillouin zone have
been given in section 2. The following set of bulk parameters
describes the energy band structure of CdTe: Eg = 1.6069 eV,
�0 = 0.953 eV, γ L

1 = 5.37, γ L
2 = 1.67, γ L

3 = 1.98,
me = 0.091m0 and Ep = 17.9 eV. These result in α = 1.24,
γ1 = 1.66, γ2 = −0.19 and γ3 = 0.12.

In figure 1 we show the variation of the first few electron
and hole energy levels as a function of 1/R2. It is coincident
with [17]. The bottom of the conduction band and the top
of the valence band are set to zero for the electron and
hole respectively. It can be seen that the average spacing
between levels increases with decrease of the quantum dot
size due to the full confinement. We can obviously observe
the existence of nonparabolicity in the conduction band levels
and the effects of admixture between three holes resulting in
crossing. Actually, the coupling between the conduction band
and valence bands also exists, but is not strong enough to cause
energy level crossing. The state for every energy level is not a
‘pure’ state any more. That is to say, we cannot identify them
as a hh, lh or spin–orbit-split level, because each hole level is
composed of one or more of these states. It is convenient to use
the standard atomic notation nQ j to describe the energy level.
We only sign a few levels. It is interesting that 1P(e) splits
into 1P1/2(e) and 1P3/2(e) (two) levels. The smaller the QD
size, the clearer the splitting.

Using the results derived in section 2, we chose the
transition from 1S3/2(h) to 1S(e) to calculate the three-photon
absorption coefficient and cross section if CdTe QDs are
size uniform. Figures 2 and 3 demonstrate the simulated
photon energy-dependent 3PA spectrum for three different size

4
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Table 1. The three-photon absorption parameters of the CdTe quantum dots investigated.

R Ei (eV) Ef (eV) h̄ω (eV) α3 (cm3/GW2)

σ3

(10−78 cm6 s2 photon−2)

1.2 −0.7454 2.7579 1.1677 0.252 × 10−4 0.8
1.4 −0.5580 2.5261 1.0280 0.799 × 10−4 1.9
1.6 −0.4595 2.3967 0.9521 1.551 × 10−4 3.3

Figure 2. The three-photon absorption coefficient α3 of different size
CdTe QDs plotted as a function of incident photon energy.

quantum dots: R = 1.2, 1.4, 1.6 nm. It can be seen that
with the increase of the QD’s radius, there is a red shift for
the absorption peak. This is owing to the fact that because of
the consequence of the quantum size effect, energy differences
between the conduction band and valence band become smaller
when R increases, which can be seen obviously from figure 1.
And in order to meet the occurrence condition of 3PA, the
incident photon energy must satisfy 3h̄ω = Ef − Ei, which
is shown in equation (10) by the δ function. Also, with
the increase of R, the magnitudes of the 3PA coefficient α3

and cross section σ3 increase too. This results from the
stronger interaction between the optical field and the bigger
QD. Table 1 summarizes the 3PA properties for three different
size QDs. We can see that the 3PA coefficients of CdTe
QDs are about 10−4 cm3 GW−2, and the cross sections are
10−78 cm6 s2 photon−2. In order to obtain a large 3PA cross
section for practical application, we should choose bigger
quantum dots in the scale of the nanostructure. It is well
known that the nonlinear absorption coefficients are related
to the fifth-order imaginary susceptibilities by [11] α3 =
5π Im χ(5)/(λn3

0c2ε2
0), where n0 is the linear refractive index,

λ the laser wavelength, and c the speed of the light in vacuum.
So we can make a numerical calculation of the imaginary
susceptibilities for 3PA Im χ(5)(−ω; ω,−ω,ω,−ω,ω). As
pointed out by Cronstrand et al [22], the numerical calculation
of χ(5)(−ω; ω,−ω,ω,−ω,ω) via the full SOS approach is a
formidable task.

We also can obtain the intensity change for an excitation
beam along the propagation direction (z axis). According
to the nonlinear absorption theory, the intensity attenuation
due to multi-photon absorption for the incident beam versus

Figure 3. The three-photon absorption cross section σ3 of different
size CdTe QDs plotted as a function of incident photon energy.

propagation distance has the following relationship [23]:
dI (z)/dz = −α I (z) − α2 I 2(z) − α3 I 3(z), where α, α2 and
α3 are the one-, two-,and three-photon absorption coefficients
of a given medium. In the case of just a pure degenerate
3PA process occurring within the medium, the solution can

be simply obtained as I (z) = I0/

√

(1 + 2α3z I 2
0 ), where

I0 is the incident intensity of the excitation beam and
z is the propagation distance within the sample medium.
The experiment observation confirms that it is much harder
to saturate 2PA and 3PA processes in NCs than in bulk
crystal [24]. So under low intensity excitation, it is allowable
to ignore the saturation. Figure 4 shows the transmitted laser
beam intensity versus the incident intensity for three different
size quantum dots under their own three-photon resonance
absorption. It can be clearly seen that there is an optical power
limiting behavior in the 3PA process. For the R = 1.6 nm QD,
the input intensity increases from 25 to 200 GW cm−2 while
the transmitted intensity increases from 20 to 47 GW cm−2.
And the bigger the QD is, the stronger the optical power
limiting is, due to their larger 3PA coefficient. This means
that material which has a large 3PA coefficient could be a good
optical limiter.

4. Conclusions

In conclusion, within the framework of the eight-band model
k · p effective-mass approximation we have studied the
electronic structure of the CdTe quantum dot, taking into
account the coupling of the doubly degenerate conduction
band and the twofold-degenerate bands of heavy, light, and

5
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Figure 4. Transmitted intensity as a function of the incident intensity
for three different size CdTe QDs under their own three-photon
absorption frequency: (a) R = 1.2 nm,
α3 = 0.252 × 10−4 cm3 GW−2; (b) R = 1.4 nm,
α3 = 0.799 × 10−4 cm3 GW−2; (c) R = 1.6 nm,
α3 = 1.551 × 10−4 cm3 GW−2.

spin–orbit-split holes. The average spacing between levels
increases with decrease of the quantum dot size due to the full
confinement. There can obviously be observed the existence of
nonparabolicity in the conduction band levels and the effects
of admixture between three holes resulting in crossing. On the
basis of the energy levels and electronic states, the expressions
for the size-dependent three-photon absorption coefficient and
cross section have been deduced for the linear polarization
of light under the two-level model, choosing the transition
from 1S3/2(h) to 1S(e). The numerical calculations reveal
that for CdTe QDs, the magnitude of the 3PA cross sections
are about 10−78 cm6 s2 photon−2 and, with the increase of the
QD’s radius, there is a red shift for the absorption peak, and
the magnitudes of the 3PA coefficient α3 and cross section σ3

increase too. In addition, we investigate the intensity change of
an excitation beam along the propagation direction according
to the basic theoretical consideration of the 3PA to study the
optical limiting effect. These theoretical analyses are of great
importance to multi-photon fluorescence imaging and optical
devices.
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